当前位置:首页 > 教案 > 数学教案

初中数学数据的收集教案

时间:2024-07-14 22:27:16
初中数学数据的收集教案

初中数学数据的收集教案

作为一名为他人授业解惑的教育工作者,可能需要进行教案编写工作,教案是教材及大纲与课堂教学的纽带和桥梁。快来参考教案是怎么写的吧!以下是小编帮大家整理的初中数学数据的收集教案,欢迎阅读,希望大家能够喜欢。

初中数学数据的收集教案1

教学目标

1.了解相反数的意义,会求有理数的相反数;

2.进一步培养学生分类讨论的思想和观察、归纳与概括的能力.

3.初步认识对立统一的规律。

教学建议

一、重点、难点分析

本节的重点是了解相反数的意义,理解相反数的代数定义与几何定义的一致性.难点是多重符号的化简.“只有符号不同的两个数”中的“只有”指的是除了符号不同以外完全相同(也就是下节课要学的绝对值相同)。不能理解为只要符号不同的两个数就互为相反数。另外,“0的相反数是0”也是相反数定义的一部分。关于“数a的相反数是-a”,应该明确的是-a不一定是正数,a不一定是正数。关于多重符号的化简,如果一个正数前面有偶数个“-”号,可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号。

二、知识结构

相反数的定义相反数的性质及其判定相反数的应用

三、教法建议

这节课教学的主要内容是互为相反数的概念。

由于教材先讲相反数,后讲绝对值,所以相反数的定义只是形式上的描述,主要通过相反数的几何意义理解相反数的概念。教学中建议,直接给出相反数的几何定义,通过实例了解求一个数的相反数的方法。按着数轴相反数绝对值的顺序教学,可充分利用数轴使数与形更好地结合起来。

四、相反数的相关知识

1.相反数的意义

(1)只有符号不同的两个数叫做互为相反数,如-1999与1999互为相反数。

(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。如5与-5是互为相反数。

(3)0的相反数是0。也只有0的相反数是它的本身。

(4)相反数是表示两个数的相互关系,不能单独存在。

2.相反数的表示

在一个数的前面添上“-”号就成为原数的相反数。若表示一个有理数,则的相反数表示为-。在一个数的前面添上“+”号仍与原数相联系同。例如,+7=7,特别地,+0=0,-0=0。

3.相反数的特性

若互为相反数,则,反之若,则互为相反数。

4.多重符号化简

(1)相反数的意义是简化多重符号的依据。如是-1的相反数,而-1的相反数为+1,所以。

(2)多重符号化简的结果是由“-”号的个数决定的。如果“-”号是奇数个,则

果为负;如果是偶然数个,则结果为正。可简写为“奇负偶正”。

例如。由此可见,化简一个数就是把多重符号化成单一符号,若结果是“+”号,一般省略不写。

初中数学数据的收集教案2

教学目标

(一)知识认知要求

1。回顾收集数据的方式。

2。回顾收集数据时,如何保证样本的代表性。

3。回顾频率、频数的概念及计算方法。

4。回顾刻画数据波动的统计量:极差、方差、标准差的概念及计算公式。

5。能利用计算器或计算机求一组数据的算术平均数。

(二)能力训练要求

1。熟练掌握本章的知识网络结构。

2。经历数据的收集与处理的过程,发展初步的统计意识和数据处理能力。

3。经历调查、统计等活动,在活动中发 展学生解决问题的能力。

(三)情感与价值观要求

1。通过对本章内容的回顾与思考,发展学 生用数学的意识。

2。在活动中培养学生团队精神。

教学重点

1。建立本章的知识框架图。

2。体会收集数据的方式,保证样本的代表性,频率、频数及刻画数据离散程度的统 计量在实际情境中的意义和应用。

教学难点

收集数据的方式、抽样时保证样本的代表性、频率、频数、刻画数据离散程度的统计量在不同情境中的应用。

教学过程

一、导入新课

本章的内容已全部学完。现在如何让你调查一个情况。并且根据你获得数据,分析整理,然后写出调查报告,我想大家现在心里应该有数。

例如,我们要调查一下“上网吧的人的年龄”这一情况,我们应如何操作?

先选择调查方式,当然这个调查应采用抽样调查的方式,因为我们不可能调查到所有上网吧的人,何况也没有必要。

同学们感兴趣的话,下去以后可以以小组为单位,选择自己感兴趣的事情做调查,然后再作统计分析,然后把调查结果汇报上来,我们可以比一比,哪一个组表现最好?

二、讲授新课

1。举例说明收集数据的方式主要有哪几种类型。

2。抽样调查时,如何保证样本的代表性?举例说明。

3。举出与频数、频率有关的几个生活实例?

4。刻画数据波动的统计量有 哪些?它们有什么作用?举例说明。

针对上面的几个问题,同学们先独 立思考,然后可在小组内交流你的想法,然后我们每组选出代表来回答。

(教师可参与到学生的讨论中,发现同学们前面知识掌握不好的地方,及时补上)。

收集数据的方式有两种类型:普查和抽样调查。

例如:调查我校八年级同学每天做家庭作业的时间,我们就可以用普查的形式。

在这次调查中,总体:我校八年级全体学生每天做家庭作业的时间;个体:我校八年级每个学生每天做家庭作业的时间。

用普查的方式可以直接获得总体情况。但有时总体中个体数目太多,普查的工作量较大;有时受客观条件的限制,无法对所有个体进行普查;有时调查具有破坏性,不允许普查,此时可用抽样调查。

例如把上面问题改成“调查全国八年级同学每天做家庭作业的时间”,由于个体数目太多,普查的工作量也较大,此时就采取抽样调查,从总体中抽取一个样本,通过样本的特征数字来估计总体,例如平均数、中位数、众数 、极差、方差等。

上面我们回顾了为了了解某种情况而采取的调查方式:普查和抽样调查,但抽样调查必须保证数据具有代表性,因为只 有这样,你抽取的样本才能体现出总体的情况,不然,就会失去可靠性和准确性。

例如对我们班里某门学科的成绩情况,有时不仅知道平均成绩,还要知道90分以上占多少,80到90分之间占多少,……,不及格的占多少等,这时,我们只要看一下每个学生的成绩落在哪一个分数段,落在这个分数段的分数有几个,表明数据落在这个小组的频数就是多少,数据落在这个小组的频率就是频数与数据总个数的商。

刻画数据波动的统计量有极差、方差、标准差。它们是用来描述一组数据的稳定性的。一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。

例如:某农科所在8个试验点,对甲、乙两种玉米进行对比试验,这两种玉米在各试验点的亩产量如下(单位:千克)

甲:450 460 450 430 450 460 440 460

乙:440 470 460 440 430 450 470 4 40

在这个试验点甲、乙两种玉米哪一种产量比较稳定?

我们可以算极差。甲种玉米极差为460-430=30千克;乙种玉米极差为470-430=40千克。所以甲种玉米较稳定。

还可以用方差来比较哪一种玉米稳定。

s甲2=100,s乙2=200。

s甲2<s乙2,所以甲种玉米的产量较稳定。

三。建立知识框架图

通 过刚才的几个问题回顾思考了我们这一章的`重点内容,下面构建本章的知识结构图。

四、随堂练习

例1一家电脑生产厂家在某城市三个经销本厂产品的大商场调查,产品的销量占这三个 大商场同类产品销量的40%。由此在广告中宣传,他们的产品在国内同类产品的销售量占40%。请你根据所学的统计知识,判断该宣传中的数据是否可靠:________,理由是________。

分析:这是一道判断说理型题,它要求借助于统计知识,作出科学的判断, 同时运 用统计原理给予准确的解释。因此,该电脑生产厂家凭借挑选某城市经销本产品情况,断然说他们的产品在国内同类产品的销量占40%,宣传中的数据是不可靠的,其理由有二:第一,所取样本容量太小;第二,样本抽取缺乏代表性和广泛性。

例2在举国上下众志成城抗击“非典” 的斗争中,疫情变化牵动着全国人民的心 。请根据下面的疫情统计图表回答问题:

(1)图10是5月11日至5月29日全国疫情每天新增数据统计走势图,观察后回答:

①每天新增确诊病例与新增疑似病例人数之和超过100人的天数共有__________天;

②在本题的统计中,新增确诊病例的人数的中位数是___________;

③本题在对新增确诊病例的统计中,样本是__________,样本容量是__________。

(2)下表是我国一段时间内全国确诊病例每天新增的人数与天数的频率统计表。(按人数分组)

①100人以下的分组组距是________;

②填写本统计表中未完成的空格;

③在统计的这段时期中,每天新增确诊

病例人数在80人以下的天数共有_________天。

解:(1)①7 ②26 ③5月11日至29日每天新增确诊病例人数 19

(2)①10人 ②11 40 0。125 0。325 ③25

五.课时小结

这节课我们通过回顾与思考这一章的重点内容,共同建立的知识框架图,并进一步用统计的思想和知识解决问题,作出决策。

六.课后作业:

七.活动与探究

从鱼塘捕得同时放养的草鱼240尾,从中任选9尾,称得每尾鱼的质量分别是1。5,1。6,1。4,1。6,1。3,1。4,1。2,1。7,1。8(单位:千克)。依此估计这240尾鱼的总质量大约是

A。300克 B。360千克C。36千克 D。30千克

初中数学数据的收集教案3

教学目标

(一)知识认知要求

1、回顾收集数据的方式。

2、回顾收集数据时,如何保证样本的代表性。

3、回顾频率、频数的概念及计算方法。

4、回顾刻画数据波动的统计量:极差、方差、标准差的概念及计算公式。

5、能利用计算器或计算机求一组数据的算术平均数。

(二)能力训练要求

1、熟练掌握本章的知识网络结构。

2、经历数据的收集与处理的过程,发展初步的统计意识和数据处理能力。

3、经历调查、统计等活动,在活动中发展学生解决问题的能力。

(三)情感与价值观要求

1、通过对本章内容的回顾与思考,发展学生用数学的意识。

2、在活动中培养学生团队精神。

教学重点

1、建立本章的知识框架图。

2、体会收集数据的方式,保证样本的代表性,频率、频数及刻画数据离散程度的统计量在实际情境中的意义和应用。

教学难点

收集数据的方式、抽样时保证样本的代表性、频率、频数、刻画数据离散程度的统计量在不同情境中的应用。

教学过程

一、导入新课

本章的内容已全部学完。现在如何让你调查一个情况。并且根据你获得数据,分析整理,然后写出调查报告,我想大家现在心里应该有数。

例如,我们要调查一下“上网吧的人的年龄”这一情况,我们应如何操作?

先选择调查方式,当然这个调查应采用抽样调查的方式,因为我们不可能调查到所有上网吧的人,何况也没有必要。

同学们感兴趣的话,下去以后可以以小组为单位,选择自己感兴趣的事情做调查,然后再作统计分析,然后把调查结果汇报上来,我们可以比一比,哪一个组表现最好?

二、讲授新课

1、举例说明收集数据的方式主要有哪几种类型。

2、抽样调查时,如何保证样本的代表性?举例说明。

3、举出与频数、频率有关的几个生活实例?

4、刻画数据波动的统计量有哪些?它们有什么作用?举例说明。

针对上面的几个问题,同学们先独立思考,然后可在小组内交流你的想法,然后我们每组选出代表来回答。

(教师可参与到学生的讨论中,发现同学们前面知识掌握不好的地方,及时补上)。

收集数据的方式有两种类型:普查和抽样调查。

例如:调查我校八年级同学每天做家庭作业的时间,我们就可以用普查的形式。

在这次调查中,总体:我校八年级全体学生每天做家庭作业的时间;个体:我校八年级每个学生每天做家庭作业的时间。

用普查的方式可以直接获得总体情况。但有时总体中个体数目太多,普查的工作量较大;有时受客观条件的限制,无法对所有个体进行普查;有时调查具有破坏性,不允许普查,此时可用抽样调查。

例如把上面问题改成“调查全国八年级同学每天做家庭作业的时间”,由于个体数目太多,普查的工作量也较大,此时就采取抽样调查,从总体中抽取一个样本,通过样本的特征数字来估计总体,例如平均数、中位数、众数、极差、方差等。

上面我们回顾了为了了解某种情况而采取的调查方式:普查和抽样调查,但抽样调查必须保证数据具有代表性,因为只有这样,你抽取的样本才能体现出总体的情况,不然,就会失去可靠性和准确性。

例如对我们班里某门学科的成绩情况,有时不仅知道平均成绩,还要知道90分以上占多少,80到90分之间占多少,不及格的占多少等,这时,我们只要看一下每个学生的成绩落在哪一个分数段,落在这个分数段的分数有几个,表明数据落在这个小组的频数就是多少,数据落在这个小组的频率就是频数与数据总个数的商。

刻画数据波动的统计量有极差、方差、标准差。它们是用来描述一组数据的稳定性的。一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。

例如:某农科所在8个试验点,对甲、乙两种玉米进行对比试验,这两种玉米在各试验点的亩产量如下(单位:千克)

甲:450、 460、 450 、430、 450、 460、 440 、460

乙:440 、470 、460 、440 、430 、450、 470、 4 、40

在这个试验点甲、乙两种玉米哪一种产量比较稳定?

我们可以算极差。甲种玉米极差为460-430=30千克;乙种玉米极差为470-430=40千克。所以甲种玉米较稳定。

还可以用方差来比较哪一种玉米稳定。

s甲2=100,s乙2=200。

s甲2<s乙2,所以甲种玉米的产量较稳定。

三、建立知识框架图

通过刚才的几个问题回顾思考了我们这一章的重点内容,下面构建本章的知识结构图。

四、随堂练习

例1一家电脑生产厂家在某城市三个经销本厂产品的大商场调查,产品的销量占这三个大商场同类产品销量的40%。由此在广告中宣传,他们的产品在国内同类产品的销售量占40%。请你根据所学的统计知识,判断该宣传中的数据是否可靠:________,理由是________。

分析:这是一道判断说理型题,它要求借助于统计知识,作出科学的判断,同时运用统计原理给予准确的解释。因此,该电脑生产厂家凭借挑选某城市经销本产品情况,断然说他们的产品在国内同类产品的销量占40%,宣传中的数据是不可靠的,其理由有二:第一,所取样本容量太小;第二,样本抽取缺乏代表性和广泛性。

例2在举国上下众志成城抗击“非典”的斗争中,疫情变化牵动着全国人民的心。请根据下面的疫情统计图表回答问题:

(1)图10是5月11日至5月29日全国疫情每天新增数据统计走势图,观察后回答:

①每天新增确诊病例与新增疑似病例人数之和超过100人的天数共有__________天;

②在本题的统计中,新增确诊病例的人数的中位数是___________;

③本题在对新增确诊病例的统计中,样本是__________,样本容量是__________。

(2)下表是我国一段时间内全国确诊病例每天新增的人数与天数的频率统计表。(按人数分组)

①100人以下的分组组距是________;

②填写本统计表中未完成的空格;

③在统计的这段时期中,每天新增确诊

病例人数在80人以下的天数共有_________天。

解:(1)①7 ②26 ③5月11日至29日每天新增确诊病例人数19

(2)①10人②11 40 0、125 0、325 ③25

五、课时小结

这节课我们通过回顾与思考这一章的重点内容,共同建立的知识框架图,并进一步用统计的思想和知识解决问题,作出决策。

六、课后作业

七、活动与探究

从鱼塘捕得同时放养的草鱼240尾,从中任选9尾,称得每尾鱼的质量分别是1.5,1.6,1.4,1.6,1.3,1.4,1.2,1.7,1.8(单位:千克)。依此估计这240尾鱼的总质量大约是

A、300克B、360千克C、36千克D、30千克

《初中数学数据的收集教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式